已知函数f(x)=x^3+ax^2-a^2x+2,a∈R (1)若a<0时,试求函数f(x)单调递减区间(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4只要第二问

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/03 21:05:13
已知函数f(x)=x^3+ax^2-a^2x+2,a∈R (1)若a<0时,试求函数f(x)单调递减区间(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4只要第二问

已知函数f(x)=x^3+ax^2-a^2x+2,a∈R (1)若a<0时,试求函数f(x)单调递减区间(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4只要第二问
已知函数f(x)=x^3+ax^2-a^2x+2,a∈R (1)若a<0时,试求函数f(x)单调递减区间(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4
只要第二问就可以了 会的冒个泡~

已知函数f(x)=x^3+ax^2-a^2x+2,a∈R (1)若a<0时,试求函数f(x)单调递减区间(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4只要第二问
(2)证明:
a=0,
f(x)=x^3+2,设A(x1,x1^3+2),B(x2,x2^3+2)
导数f’(x)=3x^2
A处切线y=3x1^2*(x-x1)+x1^3+2
B处切线y=3x2^2*(x-x2)+x2^3+2
两者联立,又x=2
两式相减得到,3*2(x1^2-x2^2)+2x2^3-2x1^3=0
化简得:2(x1-x2)[3(x1+x2)-(x1^2+x1*x2+x2^2)]=0
又因为A,B不重合,所以x1≠x2,
所以3(x1+x2)-(x1^2+x1*x2+x2^2)=0
3(x1+x2)=x1^2+x1*x2+x2^2
=(x1+x2)^2-x1*x2
>(x1+x2)^2-(1/4*x1^2+x1*x2+1/4*x2^2)
=(x1+x2)^2-1/4*(x1+x2)^2
=3/4*(x1+x2)^2
把(x1+x2)看做未知数
解上述不等式可得,
0

(1)f'(x)=3x^2+2ax-a^2=(3x-a)(x+a)
令f'(x)<0解得a/3故减区间为[a/3,-a]
(2)a=0则f(x)=x^3+2
设A(x1,y1) B(x2,y2) 切点坐标为(n,n^3+2) 那个交点为(2,m)
f'(x)=3x^2 则f'(n)=3n^2=(n^3+2-m)/(n-2)

全部展开

(1)f'(x)=3x^2+2ax-a^2=(3x-a)(x+a)
令f'(x)<0解得a/3故减区间为[a/3,-a]
(2)a=0则f(x)=x^3+2
设A(x1,y1) B(x2,y2) 切点坐标为(n,n^3+2) 那个交点为(2,m)
f'(x)=3x^2 则f'(n)=3n^2=(n^3+2-m)/(n-2)
化简得6n^2+2-m=0
故x1、x2即为该方程的两个根,由韦达定理得
x1+x2=0<4

收起

此题考点是解析几何两点距离最值问题.应该设出点的坐标,分析A,B两点和直线交点距离的最小值问题.用到不等式知识.