非金属材料亦那些.主要是生活中常见的一些非金属材料,以及它的特性.

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 19:27:41
非金属材料亦那些.主要是生活中常见的一些非金属材料,以及它的特性.

非金属材料亦那些.主要是生活中常见的一些非金属材料,以及它的特性.
非金属材料亦那些.
主要是生活中常见的一些非金属材料,以及它的特性.

非金属材料亦那些.主要是生活中常见的一些非金属材料,以及它的特性.
无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的 无机非金属材料分类 分类方法.通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类.传统的无机非金属材料是工业和基本建设所必需的基础材料.如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关.它们产量大,用途广.其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料.新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料.它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础.主要有先进陶瓷(advanced ceramics)、非晶态材料(noncrystal material〉、人工晶体〈artificial crys-tal〉、无机涂层(inorganic coating)、无机纤维(inorganic fibre〉等 (1)传统陶瓷 陶瓷在我国有悠久的历史,是中华民族古老文明的象征.从西安地区出土的秦始皇陵中大批陶兵马俑,气势宏伟,形象逼真,被认为是世界文化奇迹,人类的文明宝库.唐代的唐三彩、明清景德镇的瓷器均久负盛名. 传统陶瓷材料的主要成分是硅酸盐,自然界存在大量天然的硅酸盐,如岩石、土壤等,还有许多矿物如云母、滑石、石棉、高岭石等,它们都属于天然的硅酸盐.此外,人们为了满足生产和生活的需要,生产了大量人造硅酸盐,主要有玻璃、水泥、各种陶瓷、砖瓦、耐火砖、水玻璃以及某些分子筛等.硅酸盐制品性质稳定,熔点较高,难溶于水,有很广泛的用途. 硅酸盐制品一般都是以黏土(高岭土)、石英和长石为原料经高温烧结而成.黏土的化学组成为Al2O3·2SiO2·2H2O,石英为SiO2,长石为K2O·Al2O3·6SiO2(钾长石)或Na2O·Al2O3·6SiO2(钠长石).这些原料中都含有SiO2,因此在硅酸盐晶体结构中,硅与氧的结合是最重要也是最基本的. 硅酸盐材料是一种多相结构物质,其中含有晶态部分和非晶态部分,但以晶态为主.硅酸盐晶体中硅氧四面体[SiO4]是硅酸盐结构的基本单元.在硅氧四面体中,硅原子以sp杂化轨道与氧原子成键,Si—O键键长为162 pm,比起Si和O的离子半径之和有所缩短,故Si—O键的结合是比较强的. (2)精细陶瓷 精细陶瓷的化学组成已远远超出了传统硅酸盐的范围.例如,透明的氧化铝陶瓷、耐高温的二氧化锆(ZrO2)陶瓷、高熔点的氮化硅(Si3N4)和碳化硅(SiC)陶瓷等,它们都是无机非金属材料,是传统陶瓷材料的发展.精细陶瓷是适应社会经济和科学技术发展而发展起来的,信息科学、能源技术、宇航技术、生物工程、超导技术、海洋技术等现代科学技术需要大量特殊性能的新材料,促使人们研制精细陶瓷,并在超硬陶瓷、高温结构陶瓷、电子陶瓷、磁性陶瓷、光学陶瓷、超导陶瓷和生物陶瓷等方面取得了很好的进展,下面选择一些实例做简要的介绍. 高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度.由于需要用冷却水冷却,热能散失严重,热效率只有30%左右.如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1 300 ℃左右,由于燃料充分燃烧而又不需要水冷系统,使热效率大幅度提高.用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好. 目前已有多个国家的大的汽车公司试制无冷却式陶瓷发动机汽车.我国也在1990年装配了一辆并完成了试车.陶瓷发动机的材料选用氮化硅,它的机械强度高、硬度高、热膨胀系数低、导热性好、化学稳定性高,是很好的高温陶瓷材料.氮化硅可用多种方法合成,工业上普遍采用高纯硅与纯氮在1 300 ℃反应后获得: 3Si+2N2→Si3N4 (1 300 ℃) 高温结构陶瓷除了氮化硅外,还有碳化硅(SiC)、二氧化锆(ZrO2)、氧化铝等. 透明陶瓷一般陶瓷是不透明的,但光学陶瓷像玻璃一样透明,故称透明陶瓷.一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者使光产生散射,所以就不透明了.因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷.早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-二氧化锆等多种氧化物系列透明陶瓷.近期又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等.这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2 000 ℃以上.如氧化钍-氧化钇透明陶瓷的熔点高达3 100 ℃,比普通硼酸盐玻璃高1 500 ℃.透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2万小时,是使用寿命最长的高效电光源.高压钠灯的工作温度高达1 200 ℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯.透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等. 光导纤维从高纯度的二氧化硅或称石英玻璃熔融体中,拉出直径约100 μm的细丝,称为石英玻璃纤维.玻璃可以透光,但在传输过程中光损耗很大,用石英玻璃纤维光损耗大为降低,故这种纤维称为光导纤维,是精细陶瓷中的一种. 利用光导纤维可进行光纤通信.激光的方向性强、频率高,是进行光纤通信的理想光源.光纤通信与电波通信相比,光纤通信能提供更多的通信通路,可满足大容量通信系统的需要. 光导纤维一般由两层组成,里面一层称为内芯,直径几十微米,但折射率较高;外面一层称包层,折射率较低.从光导纤维一端入射的光线,经内芯反复折射而传到末端,由于两层折射率的差别,使进入内芯的光始终保持在内芯中传输着.光的传输距离与光导纤维的光损耗大小有关,光损耗小,传输距离就长,否则就需要用中继器把衰减的信号放大.用最新的氟玻璃制成的光导纤维,可以把光信号传输到太平洋彼岸而不需任何中继站. 在实际使用时,常把千百根光导纤维组合在一起并加以增强处理,制成像电缆一样的光缆,这样既提高了光导纤维的强度,又大大增加了通信容量. 用光缆代替通信电缆,可以节省大量有色金属,每公里可节省铜1.1 t、铅2~3 t.光缆有质量轻、体积小、结构紧凑、绝缘性能好、寿命长、输送距离长、保密性好、成本低等优点.光纤通信与数字技术及计算机结合起来,可以用于传送电话、图像、数据、控制电子设备和智能终端等,起到部分取代通信卫星的作用. 光损耗大的光导纤维可在短距离使用,特别适合制作各种人体内窥镜,如胃镜、膀胱镜、直肠镜、子宫镜等,对诊断、医治各种疾病极为有利. 生物陶瓷人体器官和组织由于种种原因需要修复或再造时,选用的材料要求生物相容性好,对肌体无免疫排异反应;血液相容性好,无溶血、凝血反应;不会引起代谢作用异常现象;对人体无毒,不会致癌.目前已发展起来的生物合金、生物高分子和生物陶瓷基本上能满足这些要求.利用这些材料制造了许多人工器官,在临床上得到广泛的应用.但是这类人工器官一旦植入体内,要经受体内复杂的生理环境的长期考验.例如,不锈钢在常温下是非常稳定的材料,但把它做成人工关节植入体内,三五年后便会出现腐蚀斑,并且还会有微量金属离子析出,这是生物合金的缺点.有机高分子材料做成的人工器官容易老化,相比之下,生物陶瓷是惰性材料,耐腐蚀,更适合植入体内. 氧化铝陶瓷做成的假牙与天然齿十分接近,它还可以做人工关节用于很多部位,如膝关节、肘关节、肩关节、指关节、髋关节等.ZrO2陶瓷的强度、断裂韧性和耐磨性比氧化铝陶瓷好,也可用以制造牙根、骨和股关节等.羟基磷灰石〔Ca10(PO4)6(OH)2〕是骨组织的主要成分,人工合成的与骨的生物相容性非常好,可用于颌骨、耳听骨修复和人工牙种植等.目前发现用熔融法制得的生物玻璃,如CaO-Na2O-SiO2-P2O5,具有与骨骼键合的能力. 陶瓷材料最大的弱点是性脆,韧性不足,这就严重影响了它作为人工人体器官的推广应用.陶瓷材料要在生物工程中占有地位,必须考虑解决其脆性问题. (3)纳米陶瓷 从陶瓷材料发展的历史来看,经历了三次飞跃.由陶器进入瓷器这是第一次飞跃;由传统陶瓷发展到精细陶瓷是第二次飞跃,在这个期间,不论是原材料,还是制备工艺、产品性能和应用等许多方面都有长足的进展和提高,然而对于陶瓷材料的致命弱点──脆性问题没有得到根本的解决.精细陶瓷粉体的颗粒较大,属微米级(10 m),有人用新的制备方法把陶瓷粉体的颗粒加工到纳米级 (10 m),用这种超细微粉体粒子来制造陶瓷材料,得到新一代纳米陶瓷,这是陶瓷材料的第三次飞跃.纳米陶瓷具有延性,有的甚至出现超塑性.如室温下合成的TiO2陶瓷,它可以弯曲,其塑性变形高达100%,韧性极好.因此人们寄希望于发展纳米技术去解决陶瓷材料的脆性问题.纳米陶瓷被称为21世纪陶瓷. 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀.此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及.但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料.与高分子材料相比,密度较大,制造工艺较复杂. 无机非金属材料用作电子器件 特种无机非金属材料的特点是:①各具特色.例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等.②各种物理效应和微观现象.例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性.③不同性质的材料经复合而构成复合材料.例如:金属陶瓷、高温无机涂层,以及用无机纤维、晶须等增强的材料